A C++ library for fuzzy sensitivity analysis and multiple fuzzy linear regression
نویسنده
چکیده
Fuzzy sets theory has proven over the years to be a valuable tool for modeling uncertainty in engineering. It is used extensively in control, in expert systems and in rule-based models. However, applications to sensitivity analysis and regression are still few, mainly because there is no appropriate software available. A C++ library of objects has been developed to easily and efficiently introduce fuzzy sensitivity analysis into new or existing C/C++ code, and to perform multiple fuzzy linear regression. An outline of the library is given, together with examples of applications in hydrologic engineering. For problems involving only fuzzy regression, a more user-friendly interface is currently being developed.
منابع مشابه
PREDICTING URBAN TRIP GENERATION USING A FUZZY EXPERT SYSTEM
One of the most important stages in the urban transportation planning procedure is predicting the rate of trips generated by each trac zone. Currently, multiple linear regression models are frequently used as a prediction tool. This method predicts the number of trips produced from, or attracted to each trac zone according to the values of independent variables for that zone. One of the main li...
متن کاملPrediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کاملA NOTE ON EVALUATION OF FUZZY LINEAR REGRESSION MODELS BY COMPARING MEMBERSHIP FUNCTIONS
Kim and Bishu (Fuzzy Sets and Systems 100 (1998) 343-352) proposeda modification of fuzzy linear regression analysis. Their modificationis based on a criterion of minimizing the difference of the fuzzy membershipvalues between the observed and estimated fuzzy numbers. We show that theirmethod often does not find acceptable fuzzy linear regression coefficients andto overcome this shortcoming, pr...
متن کاملFUZZY LOGISTIC REGRESSION BASED ON LEAST SQUARE APPROACH AND TRAPEZOIDAL MEMBERSHIP FUNCTION
Logistic regression is a non-linear modification of the linearregression. The purpose of the logistic regression analysis is tomeasure the effects of multiple explanatory variables which can becontinuous and response variable is categorical. In real life there aresituations which we deal with information that is vague innature and there are cases that are not explainedprecisely. In this regard,...
متن کاملMultiple Fuzzy Regression Model for Fuzzy Input-Output Data
A novel approach to the problem of regression modeling for fuzzy input-output data is introduced.In order to estimate the parameters of the model, a distance on the space of interval-valued quantities is employed.By minimizing the sum of squared errors, a class of regression models is derived based on the interval-valued data obtained from the $alpha$-level sets of fuzzy input-output data.Then,...
متن کامل